
we-ef

WE-EF LIGHTING VFLL500 LED SERIES
Street and Area Lighting Luminaire
Australia/NZ Edition
2016

Since the release in 2011 VFL500 LED street and area luminaires quickly became a global success. Over 14,000 VFL500 LED luminaires have been supplied to projects in Australia and New Zealand to fulfil nearly every lighting objective - from lighting of public spaces to roadway illumination.

With three housing sizes, post top and side-entry mounting options, six standard optical choices, endless hybrid optic possibilities, multiple wattage and lumen packages the VFL500 LED series is a true all-around talent.

VFL500 LED street and area luminaire received the German Design Award in 2014, after winning recognition for design quality at the Red Dot awards in 2012.

In 2016, in addition to the proven VFL500 Series luminaires, WE-EF launches the VFL500X Series luminaires with increased performance and energy-saving options to complete our street and area lighting offer.

OVERVIEW VFL500 AND VFL500X SERIES

Main Features

- IP classification IP66
- Impact protection IK08
- Housing
- Hardware

Marine-grade, die-cast aluminium alloy, 5CE superior corrosion protection
PCS hardware (polymer coated stainless steel)

- Cover
- Gasket
- Heat sink
- Surge protection device

PMMA RFC ${ }^{\circledR}$ Reflection Free Contour technology
CCG ${ }^{\oplus}$ Controlled Compression Gasket technology
Integrated
Remote SP10 kV/10 kA
Integrated surge protection available on request (except VFL530X and VFL530X-SE 24 LED 1050 mA)

Mornington Pier. Mornington (AUS).

LED

Number of LEDs	$12-42$ LEDs	$12-48$ LEDs	$12-42$ LEDs	$12-48$ LEDs
Colour Temperatures (CCT)	$3000 \mathrm{~K} / 4000 \mathrm{~K}$			
Wattages	$12-84 \mathrm{~W}$	$12-96 \mathrm{~W}$	$24-181 \mathrm{~W}$	$24-207 \mathrm{~W}$
Drive Current	$350 \mathrm{~mA} / 700 \mathrm{~mA}$	$350 \mathrm{~mA} / 700 \mathrm{~mA}$	$700 \mathrm{~mA} / 1050 \mathrm{~mA} / 1400 \mathrm{~mA}$	$700 \mathrm{~mA} / 1050 \mathrm{~mA} / 1400 \mathrm{~mA}$
LED Lumen Output Range	$1,600-10,300$	$1,600-11,800$	$3,200-24,100$	$3,200-27,600$

Optics

[P65] Pedestrian/ Bicycle Lane	Yes	Yes	Yes	Yes
[S60] Streetlighting	Yes	Yes	Yes	Yes
$[565]$ Streetlighting/Intersection/Public Space	Yes	Yes	Yes	Yes
$[$ S70] Streetlighting	Yes	Yes	Yes	Yes
[A60] Asymmetric 'Forward-Throw'	Yes	Yes	Yes	Yes
$[$ R65] Rectangular 'Forward-Throw'	Yes	Yes	Yes	Yes
$[$ R] Roadlighting	On request	On request	On request	Yes
$[0]$ Area Lighting, Symmetric			Yes	Yes

Applications

P Category Lighting - Pathway 12 -24 W	Optimum [P65] [S70]	Optimum [P65] [S70]	Project-specific	Project-specific
P Category Lighting - Road 12-48 W	Optimum [R65] [S70] [S60]	Optimum [R65] [S70] [S60]	Project-specific	Project-specific
P Category Lighting - Car park 24-144 W	Optimum	Project-specific	Optimum	Project-specific
V Category Lighting - City Centre 72-207 W	Project-specific	Project-specific	Project-specific	Optimum [S60] [S70] [V]
V Category Lighting - Motorway 72-207 W	Project-specific	Project-specific	Project-specific	Optimum [V]
Industrial High Level Lighting 144-207 W	Project-specific	Project-specific	Project-specific	Optimum [A60] [R65]

Installation

Mounting Type	Post Top	Side Entry	Post Top	Side Entry
Spigot Dimensions	$076 \times 80 \mathrm{~mm}$	VFL530-SE Ø42 $\times 100$	$\emptyset 76 \times 80 \mathrm{~mm}$	VFL530X-SE Ø42 x 100
	(optional Ø60 x 80 mm)	VFL540-SE Ø60 x 100	(optional Ø60 x 80 mm)	VFL540X-SE Ø60 x 100
Pre-wired	6 m (VFL520/530)	6 m (VFL530-SE)	12 m (VFL530X 700mA)	12 m (all versions except
	12 m (VFL540)	12 m (VFL540-SE)		VFL540X-SE 144/207 W)
				20 m (VFL540X-SE 144/207 W)

THE NEW VFL500X SERIES - FEATURES AND BENEFITS

X-tra efficiency = Less watts, same performance

The new VFL500X series luminaires offer high lumen outputs while consuming less energy. Thanks to higher LED efficacy values, VFL500X luminaires are $25-30 \%$ more efficient than VFL500 luminaires.

X-tra performance $=$ More lumens. And even more lumens

With lumen outputs nearly up to 27,000 lumens the VFL500X series opens new application possibilities where high lighting levels are required. Lighting levels of industrial area lighting applications, motorways and large car parks can be easily met with 40\% extra output.

X-tra competitiveness

Total project cost can be reduced thanks to the wider range of luminaires suitable for lighting applications. 'Downsizing' to a VFL500X luminaire with a lower number of LEDs can bring cost-saving per luminaire, while a total number of luminaires - and poles needed can be brought down thanks to higher performance and new optical choices.

10-Year Warranty as usual

All WE-EF LED luminaires supplied to Australia and New Zealand come with a marketleading 10-year warranty on LED components.

The OLC ${ }^{\ominus}$ technology is the ideal method for achieving a uniform and energy saving lighting solution, providing highest safety and visual comfort, in ensuring that the failure of individual LEDs does not lead to an adverse affect in the lighting.

RFC ${ }^{\ominus}$ technology - engineered with a UVstabilised PMMA panel which has a contoured surface, contoured in a way that imitates the shape of the LED lens; the goal is to minimise the loss of light that normally occurs due to internal reflection.

Using either a 1-10 V or DALI interface with electronic converter, the light output and energy usage of the individual luminaires can be controlled. All components of the luminaire are engineered for reliability and longevity.

PCS coated fasteners made from austinetic stainless steel reduce the risk of galvanic corrosion.

10-Year Warranty
All WE-EF luminaires supplied to Australia and New Zealand have 10 -year warranty on LED components.

Outstanding and long lasting anticorrosion properties can only be achieved by a comprehensive, integrated approach. WE-EF's unique 5CE system encompasses five critical elements: Substrate; Conversion coating; Powdercoating; PCS hardware (polymer coated stainless steel); Process control.

All VFL500 and VFL500X Iuminaires are fitted with a $10 \mathrm{kV} / 10 \mathrm{kA}$ surge protection. If the surge protector has been triggered by an adverse event, the luminaire is automatically disconnected from the mains.

Important: For comprehensive protection of the luminaire against lightning and electrical surges, we generally recommend primary (Type 1) and secondary (Type 2) surge arrestors be installed into the switch board.

40\% More Efficient

With lumen outputs up to 27,000 lumens the VFL500X series opens new application possibilities where high lighting levels are required. Lighting levels of industrial area lighting applications, motorways and large car parks can be easily met with 40% extra output.

WE-EF LED ENGINEERING

Thermal Management

As a luminaire manufacturer, WE-EF's challenge is to create the best possible thermal conditions inside its products so that, as far as technically feasible, LEDs are able to operate under optimum conditions, without failures. This objective can only be successfully achieved through reference to product data sheets published by the LED manufacturers, which are generally based on their internal test results and mathematical calculations. Determining if LEDs are operating at their optimum inside a luminaire will, for example, affect service life and luminous flux performance. With the improved thermal characteristics of modern LED chips, albeit we are driving them harder (in the case of 1050 mA and 1400 mA).

LED - Operating Current (If)

LEDs may be operated at different currents. While 700, 1050 and $1,400 \mathrm{~mA}$ are most commonly applied now-a-days, developments are showing a clear trend towards 2,000 to $4,000 \mathrm{~mA}$. The greater the operating current, the greater the luminous flux. Unfortunately, the relationship between these two parameters is a degressive one; meaning, when the current is increased, the luminous flux will increase only subproportionately - in other words, efficacy (lumens per watt) drops. This phenomenon becomes even more pronounced at increased junction temperatures.

At the current state of technology, it is between 350 and $1,400 \mathrm{~mA}$ that LEDs feature a desirable, more or less linear, relationship between operating current and luminous flux. WE-EF's policy is not to drive LEDs more than 50% of the rated operating current. the fact that this is less than 50% of their maximum operating current, we still achieve L90B10 at 60,000 hours. (Measured in accordance with LM-80 and TM-21 guidelines).

LED - Service Life and Junction Temperature (TJ)

Service life data published by LED manufacturers are based on values measured over a period of at least 6,000 hours, in accordance with LM-80-08. The combination of relevant test results with mathematical models, in line with TM-21, allows conclusions to be drawn regarding LED behaviour over a considerably greater period of time - up to six times the measurement period.

Likewise, luminaire manufacturers must also subject their products to extensive series of tests, so as to allow meaningful statements to be made about system service life (WE-EF luminaires are subjected to a minimum 10,000 hours of continuous testing).

The service life information that can be derived from this process is based on various assumptions that need to be clearly documented. The following essential data must be included in relevant test reports:

- Rated ambient performance temperature (T_{q}).
- LED operating current ($\left.l_{f}\right)$.
- LED maximum decline in luminous flux $\left(B_{\gamma}\right)$
- Service life = lighting hours.

Depending on operating current I_{f} and system performance, LED junction temperatures T_{j} vary from luminaire to luminaire. For luminaires featured in WE-EF literature, when fitted with the listed maximum number of LEDs and operated at $I_{f}=700 \mathrm{~mA}$ and $\mathrm{T}_{\mathrm{q}}=25^{\circ} \mathrm{C}$, the resulting junction temperature reaches a maximum of approximately $\mathrm{T}_{\mathrm{j}}=85^{\circ} \mathrm{C}$

Should the actual on-site, mean ambient temperature for example stand at $30^{\circ} \mathrm{C}$ (vs. $\mathrm{T}_{\mathrm{q}}=25^{\circ} \mathrm{C}$), then the junction temperature T_{j} will increase by the same differential $\left(30^{\circ} \mathrm{C}\right.$ to $\left.25^{\circ} \mathrm{C}\right)$.

Like conventional lamps, LEDs age and the initial (nominal) luminous flux drops the longer an LED is in use. The lower the thermal load to which LEDs are exposed, the lower the decline in luminous flux. The diagram shown below depicts the relationship between an LED's time of operation and its luminous flux (at $I_{f}=700 \mathrm{~mA}$ and $\mathrm{T}_{\mathrm{q}}=25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{j}}=85^{\circ} \mathrm{C}$).

$\mathrm{T}_{\mathrm{q}}=25^{\circ} \mathrm{C}$				
I_{f}	$\mathrm{T}_{\mathrm{j}}^{* * *}$	TM-21	LLMF	Theoretically Expected Service Life [$1,000 \mathrm{~h}$]
				L95
350*	45	>60	0.975	170
500*	55	>60	0.950	150
700*	69	>60	0.925	120
1,050**	80	>60	0.950	90
1,400**	90	>60	0.925	80
* reference LED: XP-G2				
** reference LED: XP-L				
${ }^{* * *}$ recorded mean junction temperature (varies from luminaire to luminaire)				

LED/Lamp Lumen Maintenance Factor (LLMF).

IOS ${ }^{\circledR}$ INNOVATIVE OPTICAL SYSTEM

WE-EF's IOS ${ }^{\circledR}$ Innovative Optical System has been developed to satisfy two specific requirements; the first relating to the various international lighting standards that prescribe performance and focus on public amenity and safety issues; the second being the wide range of customised solutions that are typically the domain of the lighting design professional. IOS ${ }^{\circledR}$ is a complete system with a comprehensive set of solutions, including optical accessory toolkits that are purpose designed, engineered and tested.

IOS ${ }^{\circledR}$ system applies across the WE-EF range of luminaires and includes:

- In-house CAD design.
- Precision manufactured optical system.
- High photometric performance, beam efficiency and control.
- Superior glare control and visual comfort through appropriate shielding angles.
- Tooling exclusive to WE-EF.
- Optional optical accessory toolkit.

In street and area lighting applications, 10 S $^{\circledR}$ features full cut-off light distribution in compliance with European standard EN 13201 (Class G3/G4/G5/G6):

- Zero light emission above the 90° horizontal.
- Tightly controlled 'candela' intensities in the critical high-angle glare zone at $80^{\circ}-90^{\circ}$ (from nadir).
- Solutions to light trespass and dark skies concerns.

OLC ${ }^{\circledR}$ One LED Concept

In street and area lighting applications, a common approach is to combine LEDs with individual, symmetric or elliptical lenses which are then selectively aimed, as a means of achieving a uniform distribution. Through this multi-spot technique, the resulting interaction and overlapping of beams delivers overall light levels and, to some extent, uniformity. WE-EF's engineers have taken the opposite approach by pioneering a radically different, multi-layer technique, the OLC® One LED Concept: All LEDs within a luminaire are fitted with identical, CAD engineered lenses, and aimed in the same direction. As a result, illumination on the target surface will uniformly increase in intensity if more LEDs are added (or, conversely, be reduced if LEDs are removed), while uniformity levels always remain fully intact .The OLC ${ }^{\circledR}$ technology presents an ideal, future proof solution for street and area lighting applications. It combines the multi-layer lighting approach with modular PCB/LED/lens engineering and thereby balances the need for safety with visual comfort and energy savings.

Main features of OLC ${ }^{\circledR}$ One LED Concept:

- CAD-engineered and precision manufactured lenses deliver a tightly controlled light distribution while reducing light pollution to an absolute minimum.
- In case of failure of one or several LEDs within a luminaire, light levels drop, while uniformity is retained.
- Modular PCB/LED/lens assemblies can be replaced in case of failure or for upgrading.
- The system is 'future proof' and, when upgraded to next generation LEDs, will retain its photometric integrity.

WE-EF's multi-layer technique.

[V] Lens - Main Features

- Asymmetric 'side throw' distribution for roads with vehicular traffic.
- Maximum angle of peak intensity 65° to 70°.

[V]

[0] Lens - Main Features
- Rectangular distribution for car parks and area lighting applications.
- Maximum angle of peak intensity 65°.

[P65] Lens - Main Features

- Asymmetric 'side throw' distribution for pathways and cycle ways.
- Maximum angle of peak intensity 65° to 70°. Forward-controlled distribution.

[0]

[P65]

[S60] Lens - Main Features

- Streetlighting distribution, luminance-optimized lens.
- Spacing 7 to 8 times the mounting height [S60].

[S65] Lens - Main Features

- Streetlighting distribution, luminance-optimized lens.
- Spacing 5 to 9 times the mounting height [S65].

[S60]

[S65]

[S70] Lens - Main Features

- Streetlighting distribution, illuminance-optimized lens.
- Spacing 4 to 10 times the mounting height.

[A60] Lens - Main Features

- Asymmetric 'forward throw' distribution for lighting public spaces.
- Maximum angle of peak intensity 60° to 65°.

Rearward spill limited to an angle of 10°.

[R65] Lens - Main Features

- Rectangular 'forward throw' distribution for lighting public spaces and parking lots.
- Maximum angle of peak intensity (side and forward) under approximately 65°. Rearward spill limited to an angle of 10°.

[A60]

[V] BEAM FOR V CATEGORY LIGHTING APPLICATIONS (AS/NZS 1158)

With large luminaire quantities and long operating hours, V Category applications are designed with energy and cost-efficiency in mind.
[V]

The following benefits of WE-EF street and area luminaires help achieve the design objectives:

- Luminaire lumen outputs of $\sim 26,600$ lumens in combination with a V-category optimized [V] optic result in luminaire spacing up to 65 metres.
- Ingress protection IP66 and impact resistance IK08 make WE-EF LED luminaires maintenance-free.
- State-of-the-art LED engineering and sophisticated thermal management prolong the LED expected service life to over 80,000h, with minimal (5\%) lumen depreciation over this time period.
- 10-year warranty on LED components adds to the reduction of overall project cost.

Since 2013, WE-EF LIGHTING has supplied 1,100 street and area LED luminaires to road and street lighting projects in Australia and New Zealand.

Sydney Road, Coburg, Victoria. V3 category lighting using ASP530 LED street and area luminaires.

The main factors effecting the pole spacing are the pole height, luminaire overhang distance, road width, road alignment and pole arrangement - in conjunction with the luminaire optical option and wattage.

V1/V2 LIGHTING CATEGORIES (AS/NZS 1158) - CITY CENTRE

Design Parameters

- Road width: 12 m
- Overhang: 0 m
- Outreach arm: 1 m
- Pole arrangement: Opposite
- Traffic flow: Two way

		Pole Spacing	
Luminaire	Pole Height	V1	V2
VFL540X-SE V.BEAM 48 LED 144 W/1050 mA	9 m	46 m	46 m
VFL540X-SE V.BEAM 48 LED 207 W/1400 mA	9 m	46 m	46 m
VFL540X-SE V.BEAM 48 LED 144 W/1050 mA	10.5 m	53 m	53 m
VFL540X-SE V.BEAM 48 LED 207 W/1400 mA	10.5 m	53 m	53 m

V3 LIGHTING CATEGORY (AS/NZS 1158) - MOTORWAY

Design Parameters

- Road width: $\quad 13.5 \mathrm{~m}$ (3 lanes plus emergency lane)
- Overhang: 3 m
- Outreach arm: $\quad 4.5 \mathrm{~m}$
- Pole arrangement: Single-sided
- Traffic flow: One way

Luminaire	Pole Height	Pole Spacing
VFL54OX-SE V.BEAM 48 LED 144 W/1050 mA	12 m	57 m
VFL540X-SE V.BEAM 48 LED 207 W/1400 mA	12 m	57 m
VFL540X-SE V.BEAM 48 LED 144 W/1050 mA	13.7 m	52 m
VFL540X-SE V.BEAM 48 LED 207 W/1400 mA	13.7 m	65 m

Design Parameters

- Road width: $\quad 17 \mathrm{~m}$ (4 lanes plus emergency lane)
- Overhang: 3 m
- Outreach arm: 4.5 m
- Pole arrangement: Single-sided
- Traffic flow: One way

Luminaire	Pole Height	Pole Spacing
VFL540X-SE V.BEAM 48 LED 144 W/1050 mA	12 m	51 m
VFL540X-SE V.BEAM 48 LED 207 W/1400 mA	12 m	59 m
VFL540X-SE V.BEAM 48 LED 144 W/1050 mA	13.7 m	48 m
VFL540X-SE V.BEAM 48 LED 207 W/1400 mA	13.7 m	64 m

[0] BEAM FOR AREA LIGHTING APPLICATIONS

Modularity of WE-EF's IOS ${ }^{\circledR}$ Innovative Optical System enables creation of project and application specific optics, commonly resulting in significantly increased luminaire performance and reduction of the total project cost. The [0] beam is a good example of this approach: deigned specifically for car parks and area lighting applications, this optic helps reduce the overall number of luminaires required.

For an example of $[0]$ beam application resulting in reduced number of luminaires and higher energy-efficiency of the project please refer to the next page. The results may vary depending on the car park configuration and lighting levels required.

Sydney Adventist Hospital. Wahroonga, NSW (AUS).

P11B CAR PARK CASE STUDY

Standard Solution

- Luminaire: VFL530 XP-G2 48 W
- Quantity: 14
- Optic: R65.BEAM
- Delivered Lumens: 5000 Im
- System Wattage: 55 W
- Total Wattage: $14 \times 55 \mathrm{~W}=770 \mathrm{~W}$

Optimised Solution

- Luminaire
- Quantity
- Optic
- Delivered Lumens
- System Wattage
- Total Wattage

6 x VFL530X-SE 0.BEAM 18 LED 54 W / 1050 mA 4000 K 2 x VFL530X-SE 0.BEAM 12 LED $36 \mathrm{~W} / 1050 \mathrm{~mA} 4000 \mathrm{~K}$ 8
Q.BEAM

7000 lm/5000 Im
$60 \mathrm{~W} / 40 \mathrm{~W}$
$6 \times 60+2 \times 40=440 \mathrm{~W}$
(43\% less compared to the standard solution)

WE-EF CONTROL AND SURGE PROTECTION

LED lighting installations may be operated in a highly economic and environmentallyfriendly manner when the LEDs are dimmed on a time or activity controlled basis. Dimming lowers power consumption, improves Im/W efficacy and increases LED service life.

WE-EF Control

WE-EF Control versions offer professional solutions to a multitude of applications, enabling the operator to minimise cost of ownership while maximising environmental credentials. Contact WE-EF or your local WE-EF representative for an individual solution designed to meet your demands

Surge Protection

In Australia and New Zealand WE-EF street and area lighting luminaires are supplied with remote or integral high voltage surge protection devices of 10 kV .

For comprehensive protection of a luminaire installation against lightning and electrical surges, it is essential to also cover mains supply and data input lines at the distribution board level, by using respective primary (Type 1) and secondary (Type 2) surge arrestors.

AVAILABLE CONTROL OPTIONS FOR VFL500 AND VFL500X SERIES

VFL500 LED Series	$\begin{gathered} \text { Basic } \\ +0001 \end{gathered}$	Motion +0010	Advanced +0002	$\begin{gathered} \text { DALI } \\ +0013 \end{gathered}$	$\begin{aligned} & 1-10 \mathrm{~V} \\ & +0011 \end{aligned}$
VFL520 LED $350 \mathrm{~mA} / 700 \mathrm{~mA}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
VFL530 LED $350 \mathrm{~mA} / 700 \mathrm{~mA}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
VFL540 LED $350 \mathrm{~mA} / 700 \mathrm{~mA}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
VFL530-SE LED $350 \mathrm{~mA} / 700 \mathrm{~mA}$	\checkmark	-	\checkmark	\checkmark	\checkmark
VFL540-SE LED $350 \mathrm{~mA} / 700 \mathrm{~mA}$	\checkmark	-	\checkmark	\checkmark	\checkmark
VFL500X LED Series					
VFL530X LED 700 mA	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
VFL540X LED 700 mA	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
VFL530X 12 LEDs 1050 mA	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
VFL530X 24 LEDs 1050 mA	\checkmark	-	-	\checkmark	\checkmark
VFL530X-SE LED 700 mA	\checkmark	-	\checkmark	\checkmark	\checkmark
VFL540X-SE LED 700 mA	\checkmark	-	\checkmark	\checkmark	\checkmark
VFL540X LED 1050 mA	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
VFL540X LED 1400 mA	-	-	-	-	\checkmark
VFL530X-SE LED 1050 mA	\checkmark	-	\checkmark	\checkmark	\checkmark
VFL540X-SE LED 1050 mA	\checkmark	-	\checkmark	\checkmark	\checkmark
VFL540X-SE LED 1400 mA	-	-	-	-	\checkmark

Basic

By activating an integral electronic control switch, both power consumption and luminous flux are reduced to a pre-programmed level. Factory programmed setting: Power consumption is reduced to 45 per cent, luminous flux to 50 per cent. Other settings available on request. Requires dedicated control line (in addition to standard mains supply lines).

Motion

Triggered by a movement sensor, an integral, pre-programmed electronic controller raises the luminaire's power and light output to 100 per cent. After five minutes of nonmovement, power consumption is reduced to 45 per cent, luminous flux to 50 per cent. Other settings on request. Requires movement sensor in external housing - mounted on pole or separate structure - as well as dedicated control line (in addition to standard mains supply lines).

WE-EF Control Basic. This system has been designed to operate during the time between 'on' and 'off' as defined by the user (for example, employing a time clock or a photocell). 50 per cent dimming (D2) during low volume traffic hours is activated/de-activated via a dedicated control line.

Mundy Street. Mentone (AUS).

Advanced

An integral, pre-programmed electronic controller activates a maximum of five different dimming levels covering five consecutive periods. Factory programmed settings: As per agreement. Luminaires are operated in stand-alone mode and can be individually reprogrammed on site by means of an optional, hand-held programmer. No dedicated control line required.

WE-EF Control Advanced. This system has been designed to operate during the time between 'on' and 'off' as defined by the user (for example, employing a time clock or a photocell). Up to five different dimming levels (D1-D5) can be individually programmed, for a maximum of five consecutive periods.

Sandy Bay. Hobart (AUS).

Dynamic

Intelligent lighting control and monitoring system. Bi-directional communication between luminaires and central data controller. Individual and groups of luminaires can both be programmed for routine and special event operations as well as automatic adjustment to external factors such as ambient illuminance. Features automatic failure alerts as well as monitoring of operational data such as voltage, current, power factor, power consumption, operating hours, temperature, etc. No dedicated control line required.

WE-EF Control Dynamic. This system has been designed for the flexible management of both simple and complex lighting installations. It allows for independent programming of both individual and multiple luminaires, on a routine or special event basis, as well as remote management through operational data feedback, alerts etc.

Riverwalk. Brisbane (AUS).

VFL500 SERIES

IOS ${ }^{\circledR}$ Innovative Optical System:
[P65] Pedestrian/bicycle lane distribution
[S60] Streetlighting distribution
[S65] Streetlighting distribution
[S70] Streetlighting distribution

[P65]		3000 K	Im	4000 K	Im	kg
VFL520	12 LED 12W/350 mA	108-1500	1614	108-1501	1614	4.7
VFL520	12 LED 24W/700 mA	108-1502	2951	108-1503	2951	4.7
VFL530	24 LED 24W/350 mA	108-1556	3228	108-1557	3228	6.6
VFL530	24 LED 48W/700 mA	108-1558	5903	108-1559	5903	6.6
[S60]		3000 K	Im	4000 K	Im	kg
VFL520	12 LED 12W/350 mA	108-1480	1614	108-1481	1614	4.7
VFL520	12 LED 24W/700 mA	108-1482	2951	108-1483	2951	4.7
VFL530	24 LED 24W/350 mA	108-1153	3228	108-1154	3228	6.6
VFL530	24 LED 48W/700 mA	108-1168	5903	108-1169	5903	6.6
VFL540	36 LED 36W/350 mA	108-0846	4842	108-0877	4842	8.2
VFL540	36 LED 72W/700 mA	108-0908	8854	108-0907	8854	8.2
VFL540	42 LED 42W/350 mA	108-0850	5649	108-0879	5649	8.2
VFL540	42 LED 84W/700 mA	108-0914	10329	108-0913	10329	8.2
[S65]		3000 K	1 m	4000 K	1 m	kg
VFL520	12 LED 12W/350 mA	108-1484	1614	108-1485	1614	4.7
VFL520	12 LED 24W/700 mA	108-1486	2951	108-1487	2951	4.7
VFL530	24 LED 24W/350 mA	108-1162	3228	108-1163	3228	6.6
VFL530	24 LED 48W/700 mA	108-1177	5903	108-1178	5903	6.6
VFL540	36 LED 36W/350 mA	108-1085	4842	108-0969	4842	8.2
VFL540	36 LED 72W/700 mA	108-1087	8854	108-0970	8854	8.2
VFL540	42 LED 42W/350 mA	108-1089	5649	108-0971	5649	8.2
VFL540	42 LED 84W/700 mA	108-1091	10329	108-0972	10329	8.2
[S70]		3000 K	1 m	4000 K	1 m	kg
VFL520	12 LED 12W/350 mA	108-1488	1614	108-1489	1614	4.7
VFL520	12 LED 24W/700 mA	108-1490	2951	108-1491	2951	4.7
VFL530	24 LED 24W/350 mA	108-1156	3228	108-1157	3228	6.6
VFL530	24 LED 48W/700 mA	108-1171	5903	108-1172	5903	6.6
VFL540	36 LED 36W/350 mA	108-0858	4842	108-0883	4842	8.2
VFL540	36 LED 72W/700 mA	108-0911	8854	108-0910	8854	8.2
VFL540	42 LED 42W/350 mA	108-0862	5649	108-0885	5649	8.2
VFL540	42 LED 84W/700 mA	108-0917	10329	108-0916	10329	8.2

IOS ${ }^{\circledR}$ Innovative Optical System:
[A60] Asymmetric 'forward throw' distribution
[R65] Rectangular 'forward throw' distribution

[A60]		3000 K	1 m	4000 K	1 m	kg
VFL520	12 LED 12W/350 mA	108-1496	1614	108-1497	1614	4.7
VFL520	12 LED 24W/700 mA	108-1498	2951	108-1499	2951	4.7
VFL530	24 LED 24W/350 mA	108-1159	3228	108-1160	3228	6.6
VFL530	24 LED 48W/700 mA	108-1174	5903	108-1175	5903	6.6
VFL540	36 LED 36W/350 mA	108-1061	4842	108-0929	4842	8.2
VFL540	36 LED 72W/700 mA	108-1063	8854	108-0941	8854	8.2
VFL540	42 LED 42W/350 mA	108-1065	5649	108-0932	5649	8.2
VFL540	42 LED 84W/700 mA	108-1067	10329	108-0944	10329	8.2
[R65]		3000 K	1 m	4000 K	1 m	kg
VFL520	12 LED 12W/350 mA	108-1492	1614	108-1493	1614	4.7
VFL520	12 LED 24W/700 mA	108-1494	2951	108-1495	2951	4.7
VFL530	24 LED 24W/350 mA	108-1165	3228	108-1166	3228	6.6
VFL530	24 LED 48W/700 mA	108-1180	5903	108-1181	5903	6.6
VFL540	36 LED 36W/350 mA	108-1073	4842	108-0975	4842	8.2
VFL540	36 LED 72W/700 mA	108-1075	8854	108-0976	8854	8.2
VFL540	42 LED 42W/350 mA	108-1077	5649	108-0977	5649	8.2
VFL540	42 LED 84W/700 mA	108-1079	10329	108-0978	10329	8.2

IOS ${ }^{\circledR}$ Innovative Optical System: [S60] Streetlighting distribution [S65] Streetlighting distribution [S70] Streetlighting distribution

[S60]		3000 K	Im	4000 K	Im	kg
VFL530-SE	12 LED 12W/350 mA	108-1317	1614	108-1318	1614	5.6
VFL530-SE	12 LED 24W/700 mA	108-1297	2951	108-1298	2951	5.6
VFL530-SE	24 LED 24W/350 mA	108-1307	3228	108-1308	3228	5.8
VFL530-SE	24 LED 48W/700 mA	108-1287	5903	108-1288	5903	5.8
VFL540-SE	36 LED 36W/350 mA	108-1267	4842	108-1268	4842	8.2
VFL540-SE	36 LED 72W/700 mA	108-1247	8854	108-1248	8854	8.2
VFL540-SE	48 LED 48W/350 mA	108-1277	6456	108-1278	6456	8.2
VFL540-SE	48 LED 96W/700 mA	108-1257	11805	108-1258	11805	8.2
[S65]		3000 K	Im	4000 K	1 m	kg
VFL530-SE	12 LED 12W/350 mA	108-1323	1614	108-1324	1614	5.6
VFL530-SE	12 LED 24W/700 mA	108-1303	2951	108-1304	2951	5.6
VFL530-SE	24 LED 24W/350 mA	108-1313	3228	108-1314	3228	5.8
VFL530-SE	24 LED 48W/700 mA	108-1293	5903	108-1294	5903	5.8
VFL540-SE	36 LED 36W/350 mA	108-1273	4842	108-1274	4842	8.2
VFL540-SE	36 LED 72W/700 mA	108-1253	8854	108-1254	8854	8.2
VFL540-SE	48 LED 48W/350 mA	108-1283	6456	108-1284	6456	8.2
VFL540-SE	48 LED 96W/700 mA	108-1263	11805	108-1264	11805	8.2
[S70]		3000 K	Im	4000 K	Im	kg
VFL530-SE	12 LED 12W/350 mA	108-1319	1614	108-1320	1614	5.6
VFL530-SE	12 LED 24W/700 mA	108-1299	2951	108-1300	2951	5.6
VFL530-SE	24 LED 24W/350 mA	108-1309	3228	108-1310	3228	5.8
VFL530-SE	24 LED 48W/700 mA	108-1289	5903	108-1290	5903	5.8
VFL540-SE	36 LED 36W/350 mA	108-1269	4842	108-1270	4842	8.2
VFL540-SE	36 LED 72W/700 mA	108-1249	8854	108-1250	8854	8.2
VFL540-SE	48 LED 48W/350 mA	108-1279	6456	108-1280	6456	8.2
VFL540-SE	48 LED 96W/700 mA	108-1259	11805	108-1260	11805	8.2

VFL530-SE

IOS Innovative Optical System: [A60] Asymmetric 'forward throw' distribution [R65] Rectangular 'forward throw' distribution

[A60]		3000 K	Im	4000 K	Im	kg
VFL530-SE	12 LED 12W/350 mA	108-1321	1614	108-1322	1614	5.6
VFL530-SE	12 LED 24W/700 mA	108-1301	2951	108-1302	2951	5.6
VFL530-SE	24 LED 24W/350 mA	108-1311	3228	108-1312	3228	5.8
VFL530-SE	24 LED 48W/700 mA	108-1291	5903	108-1292	5903	5.8
VFL540-SE	36 LED 36W/350 mA	108-1271	4842	108-1272	4842	8.2
VFL540-SE	36 LED 72W/700 mA	108-1251	8854	108-1252	8854	8.2
VFL540-SE	48 LED 48W/350 mA	108-1281	6456	108-1282	6456	8.2
VFL540-SE	48 LED 96W/700 mA	108-1261	11805	108-1262	11805	8.2
[R65]		3000 K	Im	4000 K	Im	kg
VFL530-SE	12 LED 12W/350 mA	108-1325	1614	108-1326	1614	5.6
VFL530-SE	12 LED 24W/700 mA	108-1305	2951	108-1306	2951	5.6
VFL530-SE	24 LED 24W/350 mA	108-1315	3228	108-1316	3228	5.8
VFL530-SE	24 LED 48W/700 mA	108-1295	5903	108-1296	5903	5.8
VFL540-SE	36 LED 36W/350 mA	108-1275	4842	108-1276	4842	8.2
VFL540-SE	36 LED 72W/700 mA	108-1255	8854	108-1256	8854	8.2
VFL540-SE	48 LED 48W/350 mA	108-1285	6456	108-1286	6456	8.2
VFL540-SE	48 LED 96W/700 mA	108-1265	11805	108-1266	11805	8.2

VFL500X SERIES

IOS ${ }^{\circledR}$ Innovative Optical System:
[P65] Pedestrian/bicycle lane distribution
[S60] Streetlighting distribution
[S65] Streetlighting distribution
[S70] Streetlighting distribution

[P65]		3000 K	Im	4000 K	Im	kg
VFL530X	12 LED 24W/700 mA	$108-5000$	3224	$108-8360$	3720	6.6
VFL530X	12 LED 36W/1050 mA	$108-5001$	4680	$108-8361$	5400	6.6
VFL530X	24 LED 48W/700 mA	$108-5002$	6448	$108-8362$	7440	6.6
VFL530X	24 LED 72W/1050 mA	$108-5003$	9360	$108-8363$	10800	6.6
[S60]		3000 K	Im	4000 K	Im	kg
VFL530X	12 LED 24W/700 mA	$108-5004$	3224	$108-8364$	3720	6.6
VFL530X	12 LED 36W/1050 mA	$108-5005$	4680	$108-8365$	5400	6.6
VFL530X	24 LED 48W/700 mA	$108-5006$	6448	$108-8366$	7440	6.6
VFL530X	24 LED 72W/1050 mA	$108-5007$	9360	$108-8367$	10800	6.6
VFL540X	24 LED 48W/700 mA	$108-5008$	6448	$108-8368$	7440	8.2
VFL540X	24 LED 72W/1050 mA	$108-5009$	9360	$108-8369$	10800	8.2
VFL540X	36 LED 72W/700 mA	$108-5010$	9672	$108-8370$	11160	8.2
VFL540X	36 LED 108W/1050 mA	$108-5011$	14040	$108-8371$	16200	8.2
VFL540X	42 LED 84W/700 mA	$108-5012$	11284	$108-8372$	13020	8.2
VFL540X	42 LED 126W/1050 mA	$108-5013$	16380	$108-8373$	18900	8.2
VFL540X	42 LED 181W/1400 mA	$108-5014$	20950	$108-8374$	24173	8.2

[S65]		3000 K	lm	4000 K	Im	kg
VFL530X	12 LED 24W/700 mA	$108-5015$	3224	$108-8375$	3720	6.6
VFL530X	12 LED 36W/1050 mA	$108-5016$	4680	$108-8376$	5400	6.6
VFL530X	24 LED 48W/700 mA	$108-5017$	6448	$108-8377$	7440	6.6
VFL530X	24 LED 72W/1050 mA	$108-5018$	9360	$108-8378$	10800	6.6
VFL540X	24 LED 48W/700 mA	$108-5019$	6448	$108-8379$	7440	8.2
VFL540X	24 LED 72W/1050 mA	$108-5020$	9360	$108-8380$	10800	8.2
VFL540X	36 LED 72W/700 mA	$108-5021$	9672	$108-8381$	11160	8.2
VFL540X	36 LED 108W/1050 mA	$108-5022$	14040	$108-8382$	16200	8.2
VFL540X	42 LED 84W/700 mA	$108-5023$	11284	$108-8383$	13020	8.2
VFL540X	42 LED 126W/1050 mA	$108-5024$	16380	$108-8972$	18900	8.2
VFL540X	42 LED 181W/1400 mA	$108-5025$	20950	$108-8384$	24173	8.2
[S70]		3000 K	1 m	4000 K	1 m	kg
VFL530X	12 LED 24W/700 mA	$108-5026$	3224	$108-8385$	3720	6.6
VFL530X	12 LED 36W/1050 mA	$108-5027$	4680	$108-8386$	5400	6.6
VFL530X	24 LED 48W/700 mA	$108-5028$	6448	$108-8387$	7440	6.6
VFL530X	24 LED 72W/1050 mA	$108-5029$	9360	$108-8388$	10800	6.6
VFL540X	24 LED 48W/700 mA	$108-5030$	6448	$108-8389$	7440	8.2
VFL540X	24 LED 72W/1050 mA	$108-5031$	9360	$108-8390$	10800	8.2
VFL540X	36 LED 72W/700 mA	$108-5032$	9672	$108-8391$	11160	8.2
VFL540X	36 LED 108W/1050 mA	$108-5033$	14040	$108-8392$	16200	8.2
VFL540X	42 LED 84W/700 mA	$108-5034$	11284	$108-8393$	13020	8.2
VFL540X	42 LED 126W/1050 mA	$108-5035$	16380	$108-8394$	18900	8.2
VFL540X	42 LED 181W/1400 mA	$108-5036$	20950	$108-8395$	24173	8.2

IOS ${ }^{\circledR}$ Innovative Optical System:
[A60] Asymmetric 'forward throw' distribution
[R65] Rectangular 'forward throw' distribution
[V] Asymmetric 'roadlighting' distribution
[0] Rectangular distribution for area lighting

| [A60] | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

IOS ${ }^{\circledR}$ Innovative Optical System:
[P65] Pedestrian/bicycle lane distribution
[S60] Streetlighting distribution
[S65] Streetlighting distribution
[S70] Streetlighting distribution

[P65]		3000 K	Im	4000 K	Im	kg
VFL530X-SE	12 LED 24W/700 mA	$108-5064$	3224	$108-8561$	3720	5.6
VFL530X-SE	12 LED 36W/1050 mA	$108-5065$	4680	$108-8562$	5400	5.6
VFL530X-SE	24 LED 48W/700 mA	$108-5066$	6448	$108-8563$	7440	5.8
VFL530X-SE	24 LED 72W/1050 mA	$108-5067$	9360	$108-8564$	10800	5.8
[S60]		3000 K	Im	4000 K	Im	kg
VFL530X-SE	12 LED 24W/700 mA	$108-5068$	3224	$108-8565$	3720	5.6
VFL530X-SE	12 LED 36W/1050 mA	$108-5069$	4680	$108-8566$	5400	5.6
VFL530X-SE	24 LED 48W/700 mA	$108-5070$	6448	$108-8567$	7440	5.8
VFL530X-SE	24 LED 72W/1050 mA	$108-5071$	9360	$108-8568$	10800	5.8
VFL540X-SE	24 LED 48W/700 mA	$108-5072$	6448	$108-8569$	7440	8.2
VFL540X-SE	24 LED 72W/1050 mA	$108-5073$	9360	$108-8580$	10800	8.2
VFL540X-SE	36 LED 72W/700 mA	$108-5074$	9672	$108-8581$	11160	8.2
VFL540X-SE	36 LED 108W/1050 mA	$108-5075$	14040	$108-8582$	16200	8.2
VFL540X-SE	48 LED 96W/700 mA	$108-5076$	12896	$108-8583$	14880	8.2
VFL540X-SE	48 LED 144W/1050 mA	$108-8274$	18720	$108-8265$	21600	8.2
VFL540X-SE	48 LED 207W/1400 mA	$108-5077$	23943	$108-8584$	27626	8.2

[S65]		3000 K	Im	4000 K	Im	kg
VFL530X-SE	12 LED 24W/700 mA	108-5078	3224	108-8585	3720	5.6
VFL530X-SE	12 LED 36W/1050 mA	108-5079	4680	108-8586	5400	5.6
VFL530X-SE	24 LED 48W/700 mA	108-5080	6448	108-8587	7440	5.8
VFL530X-SE	24 LED 72W/1050 mA	108-5081	9360	108-8588	10800	5.8
VFL540X-SE	24 LED 48W/700 mA	108-5082	6448	108-8589	7440	8.2
VFL540X-SE	24 LED 72W/1050 mA	108-5083	9360	108-8922	10800	8.2
VFL540X-SE	36 LED 72W/700 mA	108-5084	9672	108-8590	11160	8.2
VFL540X-SE	36 LED 108W/1050 mA	108-5085	14040	108-8591	16200	8.2
VFL540X-SE	48 LED 96W/700 mA	108-5086	12896	108-8592	14880	8.2
VFL540X-SE	48 LED 144W/1050 mA	108-8273	18720	108-8264	21600	8.2
VFL540X-SE	48 LED 207W/1400 mA	108-5087	23943	108-8593	27626	8.2
[S70]		3000 K	Im	4000 K	Im	kg
VFL530X-SE	12 LED 24W/700 mA	108-5088	3224	108-8594	3720	5.6
VFL530X-SE	12 LED 36W/1050 mA	108-5089	4680	108-8595	5400	5.6
VFL530X-SE	24 LED 48W/700 mA	108-5090	6448	108-8596	7440	5.8
VFL530X-SE	24 LED 72W/1050 mA	108-5091	9360	108-8597	10800	5.8
VFL540X-SE	24 LED 48W/700 mA	108-5092	6448	108-8598	7440	8.2
VFL540X-SE	24 LED 72W/1050 mA	108-5093	9360	108-8599	10800	8.2
VFL540X-SE	36 LED 72W/700 mA	108-5094	9672	108-8601	11160	8.2
VFL540X-SE	36 LED 108W/1050 mA	108-5095	14040	108-8602	16200	8.2
VFL540X-SE	48 LED 96W/700 mA	108-5096	12896	108-8603	14880	8.2
VFL540X-SE	48 LED 144W/1050 mA	108-8271	18720	108-8261	21600	8.2
VFL540X-SE	48 LED 207W/1400 mA	108-5097	23943	108-8604	27626	8.2

IOS ${ }^{\circledR}$ Innovative Optical System:
[A60] Asymmetric 'forward throw' distribution
[R65] Rectangular 'forward throw' distribution
[V] Asymmetric 'roadlighting' distribution
[0] Rectangular distribution for area lighting

[A60]		3000 K	Im	4000 K	Im	kg
VFL530X-SE	12 LED 24W/700 mA	$108-5098$	3224	$108-8605$	3720	5.6
VFL530X-SE	12 LED 36W/1050 mA	$108-5099$	4680	$108-8606$	5400	5.6
VFL530X-SE	24 LED 48W/700 mA	$108-5100$	6448	$108-8607$	7440	5.8
VFL530X-SE	24 LED 72W/1050 mA	$108-5101$	9360	$108-8608$	10800	5.8
VFL540X-SE	24 LED 48W/700 mA	$108-5102$	6448	$108-8609$	7440	8.2
VFL540X-SE	24 LED 72W/1050 mA	$108-5103$	9360	$108-8610$	10800	8.2
VFL540X-SE	36 LED 72W/700 mA	$108-5104$	9672	$108-8611$	11160	8.2
VFL540X-SE	36 LED 108W/1050 mA	$108-5105$	14040	$108-8612$	16200	8.2
VFL540X-SE	48 LED 96W/700 mA	$108-8272$	12896	$108-8613$	14880	8.2
VFL540X-SE	48 LED 144W/1050 mA	$108-5106$	18720	$108-8266$	21600	8.2
VFL540X-SE	48 LED 207W/1400 mA	$108-5107$	23943	$108-9075$	27626	8.2
[R65]		3000 K	1 m	4000 K	1 m	kg
VFL530X-SE	12 LED 24W/700 mA	$108-5108$	3224	$108-8615$	3720	5.6
VFL530X-SE	12 LED 36W/1050 mA	$108-5109$	4680	$108-8616$	5400	5.6
VFL530X-SE	24 LED 48W/700 mA	$108-5110$	6448	$108-8617$	7440	5.8
VFL530X-SE	24 LED 72W/1050 mA	$108-5111$	9360	$108-8618$	10800	5.8
VFL540X-SE	24 LED 48W/700 mA	$108-5112$	6448	$108-8619$	7440	8.2
VFL540X-SE	24 LED 72W/1050 mA	$108-5113$	9360	$108-8920$	10800	8.2
VFL540X-SE	36 LED 72W/700 mA	$108-5114$	9672	$108-8925$	11160	8.2
VFL540X-SE	36 LED 108W/1050 mA	$108-5115$	14040	$108-8267$	16200	8.2
VFL540X-SE	48 LED 96W/700 mA	$108-5116$	12896	$108-8620$	14880	8.2
VFL540X-SE	48 LED 144W/1050 mA	$108-8994$	18720	$108-8995$	21600	8.2
VFL540X-SE	48 LED 207W/1400 mA	$108-5117$	23943	$108-8621$	27626	8.2
[V]						
VFL540X-SE	48 LED 144W/1050 mA	$108-5118$	18720	$108-8622$	21600	8.2
VFL540X-SE	48 LED 207W/1400 mA	$108-5119$	23943	$108-8623$	27626	8.2
[0]		3000 K	1 m	4000 K	1 m	kg
VFL530X-SE	24 LED 72W/1050 mA	$108-5120$	9360	$108-8624$	10800	6.6
VFL540X-SE	24 LED 72W/1050 mA	$108-5121$	9360	$108-8625$	10800	8.2
VFL540X-SE	36 LED 108W/1050 mA	$108-5122$	14040	$108-8626$	16200	8.2
VFL540X-SE	48 LED 144W/1050 mA	$108-5123$	18720	$108-8627$	21600	8.2
VFL540X-SE	48 LED 207W/1400 mA	$108-5124$	23943	$108-8628$	27626	8.2

ACCESSORIES

VFL500 SERIES						
Wall bracket		D	D1	H	C	kg
RVO for VFL520/530/540	108-0979	160	60	200	108	2.0
Pole bracket			DxL		C	kg
RV2-76 for VFL520/530/540	108-0980		¢ 76×100		147	4.8
RV2-60 for VFL520/530/540	108-0981		ø 60×100		147	4.8
RV5 for VFL520/530/540	108-0982		---		106	1.7

VFL500-SE SERIES

Wall bracket			D/D1		C	kg
REO-530	for VFL530-SE	111-0052	230/195		120	2.5
REO-540	for VFL540-SE	111-0084	230/195		140	3.4
Pole bracket			DxL	H	C	kg
RE1-530	for VFL530-SE	111-0040	ø 76×80	400	180	3.2
RE2-530	for VFL530-SE	111-0041	¢ 76×80	400	180	3.6
RE1-540	for VFL540-SE	111-0042	¢ 76×130	550	200	4.6
RE2-540	for VFL540-SE	111-0043	ø 76×130	550	200	5.3

WE-EF LIGHTING Pty Ltd
6/13 Downard Street
Braeside, Victoria 3195
Australia
Tel +61 385870444
Fax +61 385870499
www.we-ef.com

VFL500 LED SERIES

Street and Area Lighting Luminaire
Australia / NZ Edition 2016
© WE-EF 2016

